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Abstract
DNA metabarcoding is increasingly used for the assessment of aquatic communities, 
and numerous studies have investigated the consistency of this technique with tradi-
tional morpho- taxonomic approaches. These individual studies have used DNA meta-
barcoding to assess diversity and community structure of aquatic organisms both in 
marine and freshwater systems globally over the last decade. However, a systematic 
analysis of the comparability and effectiveness of DNA- based community assessment 
across all of these studies has hitherto been lacking. Here, we performed the first meta- 
analysis of available studies comparing traditional methods and DNA metabarcoding 
to measure and assess biological diversity of key aquatic groups, including plankton, 
microphytobentos, macroinvertebrates, and fish. Across 215 data sets, we found that 
DNA metabarcoding provides richness estimates that are globally consistent to those 
obtained using traditional methods, both at local and regional scale. DNA metabar-
coding also generates species inventories that are highly congruent with traditional 
methods for fish. Contrastingly, species inventories of plankton, microphytobenthos 
and macroinvertebrates obtained by DNA metabarcoding showed pronounced differ-
ences to traditional methods, missing some taxa but at the same time detecting oth-
erwise overseen diversity. The method is generally sufficiently advanced to study the 
composition of fish communities and replace more invasive traditional methods. For 
smaller organisms, like macroinvertebrates, plankton and microphytobenthos, DNA 
metabarcoding may continue to give complementary rather than identical estimates 
compared to traditional approaches. Systematic and comparable data collection will 
increase the understanding of different aspects of this complementarity, and increase 
the effectiveness of the method and adequate interpretation of the results.
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1  |  INTRODUC TION

Assessment of biological assemblages is key to almost every study 
in ecology (Hampton et al., 2013), and managing and preserving eco-
systems requires a global effort to regularly monitor the composi-
tion and diversity of their biological communities (Jørgensen et al., 
2010). In aquatic ecosystems, routine biological assessment has a 
long history and a wide range of groups of organisms (such as dia-
toms, aquatic plants, invertebrates, and fish) are monitored to eval-
uate the state and change of aquatic environments over time, and to 
assess different types of human- induced pressures and impairments 
(Barbour et al., 1999; Borja et al., 2000; Hering et al., 2018). In order 
to use these organisms in large ecological monitoring programmes, 
a variety of methods based on capture of individuals (such as biofilm 
collection, sampling by net, or electro- fishing) have been developed 
and standardized. However, the taxonomic identification remains 
achieved with morphological criteria, a time consuming task that is 
further prone to errors and achieved at family or genus taxonomic 
levels for some groups (Haase et al., 2006; Mandelik et al., 2010).

Technological advances in high throughput DNA sequencing and 
data analyses are currently revolutionizing biodiversity sciences, and 
are providing a novel approach to characterize biodiversity of whole 
communities by using the DNA of organisms for their taxonomic 
identification (Hering et al., 2018; Leese et al., 2016). Thereby, me-
tabarcoding can either be based on DNA extracted from bulk sam-
ples (i.e., pools of organisms) or from environmental samples (eDNA), 
with subsequent amplification of a specific gene region in target tax-
onomic groups using a dedicated primer pair (Deiner et al., 2017; 
Leese et al., 2016; Pawlowski et al., 2020b; Taberlet et al., 2012). 
For the purpose of this study we will refer to DNA metabarcoding 
of eDNA and bulk samples as “DNA metabarcoding” hereafter. DNA 
metabarcoding is transforming how plants and animals are surveyed 
(Deiner et al., 2017) by solving several constraints associated with 
traditional methods and is presented as being cheaper, faster, more 
sensitive, and easily scalable for routine monitoring programmes 
(Altermatt et al., 2020; Hering et al., 2018; Leese et al., 2016).

Given the stakes behind the implementation of DNA metabar-
coding for academics and stakeholders (Bruce et al., 2021; Pawlowski 
et al., 2020a, 2020b), the last decade has seen a growing number 
of studies testing DNA metabarcoding effectiveness in quantifying 
biodiversity and detecting species present in the environment. It 
is needed for two main reasons. First, to validate the concept and 
the protocols against methods, which have been applied for de-
cades and whose performance and limitations are well documented. 
Second, to ensure the continuity of long- term traditional monitoring 
time series. Accordingly, many case-  or site- specific studies have at-
tempted to estimate the congruence between the two approaches, 
that is, comparing the diversity of organisms assessed with DNA 
metabarcoding to assessments with traditional methods (e.g., Abad 

et al., 2016; Cahill et al., 2018; Fernández et al., 2018; Hänfling et al., 
2016; Leese et al., 2021; Li et al., 2019a, 2019b; Mächler et al., 2019; 
Vasselon et al., 2017). These studies have not only been conducted 
on a broad range of aquatic ecosystems, individual study sites and 
organismal groups, but are also reporting a wide range of compa-
rability versus divergence to classically assessed community data. 
For example, individual studies often report that metabarcoding 
detects a substantial proportion of species identified on morpho-
logical criteria. However, the variability between studies is high, and 
often, a significant fraction of diversity is still only detected by one 
or the other approach (e.g., Apothéloz- Perret- Gentil et al., 2017; 
Aylagas et al., 2016; Kelly et al., 2017; Polanco Fernández et al., 
2021; Vasselon et al., 2017). General knowledge on variability (or 
consistency) across studies is needed to inform about the specifici-
ties and limitations of each approach and to thus allow us to define 
the best strategies for current and future biomonitoring programs 
(Hering et al., 2018). To our knowledge, there has been no attempt 
to comprehensively review and analyse the available information in 
a systematic and quantitative way.

Here, we conducted the first systematic meta- analysis of the 
available studies that have compared the performances of DNA me-
tabarcoding with traditional methods to estimate the diversity of a 
variety of organisms in aquatic ecosystems, both marine and freshwa-
ter. Specifically, we investigated taxonomic richness (i.e., the number 
of taxa detected) and taxonomic composition (i.e., the identity of the 
taxa detected). These two elements are major components of biodi-
versity and their role on the stability and functioning of ecosystems 
has been clearly demonstrated in the past (Cardinale et al., 2006; 
Pennekamp et al., 2018). We chose not to include abundance- related 
parameters in the analysis since this aspect is still controversial in 
metabarcoding studies (Lamb et al., 2019). We first evaluated which 
method detects the highest taxonomic diversity. Second, we investi-
gated if and to what extent these methods are congruent in the taxa 
detected. Finally, we examined the spatial scale (local versus regional) 
of this congruence and if the congruence between traditional meth-
ods and metabarcoding is dependent on the group of targeted organ-
isms (plankton/microphytobenthos, macroinvertebrates, and fish). By 
aggregating the large body of literature available and analysing them 
through a straightforward meta- analysis, we aim to end speculation 
as to the abilities of both methods for monitoring aquatic systems.

2  |  MATERIAL S AND METHODS

2.1  |  Data collection

We conducted a systematic and comprehensive meta- analysis on all 
available, published studies following a set of formal criteria. Studies 
reporting comparisons between DNA metabarcoding and traditional 
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methods to assess biological diversity in aquatic ecosystems (marine 
and freshwater) were searched using the online database Web of 
Science Core Collection (Clarivate Analytics) on 25 February 2021 
(see Supporting Information S1 for the complete query used for the 
search). The combination of keywords used as search terms was cho-
sen to be as specific as possible to include any studies comparing 
DNA metabarcoding to a traditional method (including both capture 
and identification) in aquatic ecosystems. Additionally, the search 
was limited to articles published between 2010 and 2021, since no 
study using metabarcoding on our targeted groups was expected 
prior to 2010 as the methods and apparatus needed were unavail-
able. The initial search was complemented with a manual inspec-
tion of all articles published in Metabarcoding and Metagenomics and 
Environmental DNA, two new journals specialised in metabarcoding 
and environmental DNA (eDNA) studies, but whose publications 
were not yet indexed by Web of Science.

The initial search output was then carefully screened by manu-
ally checking the title, abstract and, when necessary, the complete 
content of the articles and their supplementary material, in order 
to retain only those articles that met our inclusion criteria. To be 
included in our analysis, studies had to report a comparison between 
DNA metabarcoding (on bulk or eDNA samples) and one or several 
traditional methods to assess biological diversity in aquatic ecosys-
tems (marine or freshwater). The sample types included water sam-
ples, biofilm samples, as well as bulk- metabarcoding. The diversity 
estimated by the two approaches had to be reported using quanti-
tative values expressed as taxonomic richness (i.e., the number of 
detected taxa). When this information was not directly available, 
but authors provided taxonomic lists obtained with metabarcod-
ing and traditional methods, we were able to estimate the values of 
diversity needed for the analyses and included the studies as well. 
We included only studies using DNA metabarcoding to assess taxo-
nomic diversity at the community level and therefore excluded stud-
ies using conventional PCR, qPCR, ddPCR, or barcoding for single 
species detection. Studies using artificially assembled communities 
(e.g., mock communities, aquarium) were also excluded. Finally, we 
excluded studies focusing on bacteria and fungi for which communi-
ties are rarely assessed using traditional methods.

2.2  |  Data extraction

For each comparison between a traditional method and DNA meta-
barcoding, the measures of diversity (richness) were extracted from 
the articles and the supplementary materials published by the au-
thors at two different levels: local alpha diversity (i.e., the average 
diversity per site) and regional gamma diversity (i.e., the total diver-
sity across sites). For each study, data were extracted at the low-
est possible taxonomic level that was common to both approaches 
(generally species, genus or family level).

When taxonomic diversity (here: richness) is assessed with two 
different approaches (here: traditional and DNA metabarcoding), 
the total number of detected taxa can be decomposed into three 

subsets: (1) the subset of taxa detected only by the traditional 
method, (2) the subset of taxa detected only by DNA metabarcod-
ing, and (3) the subset of taxa detected by both methods, (i.e., the 
intersection subset; Figure 1).

For gamma diversity, measures of these three subsets are often 
reported in publications in the main text or in figures (e.g., Venn di-
agrams or stacked bar plots) and were directly extracted for each 
comparison. In contrast, the subsets of taxa detected only by one or 
the other method are rarely reported at the level/resolution of each 
site, but are often available in an integrated manner only. Therefore, 
for each method, we computed an average of alpha diversity (local 
richness) across all sites. We did the same for the intersection frac-
tion (i.e., the subset of taxa detected by both methods). The inter-
section fraction for alpha diversity is rarely reported, but could be 
estimated when the articles provided detailed lists of taxa detected 
by the two methods. Finally, we estimated the “traditional only” 
fraction and the “DNA only” fraction by subtracting the intersection 
fraction from the traditional and DNA total alpha diversity.

Along with the measures of diversity, we also extracted key 
variables of interest, including article metadata, information on the 
study designs (sampled habitat, targeted taxonomic group, taxo-
nomic resolution), and methodological details about the metabar-
coding approach (markers, primers, technologies). The complete list 
of extracted data is provided as Table S1. To simplify the analyses 
and ease the reading of the results, the organisms targeted in the in-
cluded studies were grouped into four categories: plankton and mi-
crophytobenthos (including diatoms, zooplankton, phytoplankton, 
cyanobacteria, and protists), macroinvertebrates, fish, and “others” 
(e.g., corals, macrophytes, amphibians); the latter only containing a 
small number of studies.

2.3  |  Statistical analyses

To assess whether one approach detected more diversity (richness) 
than the other, we used the log- ratio ln(A/B), where, for each method 
comparison, A is the total diversity detected by DNA metabarcod-
ing and B is the total diversity detected by the traditional method 
(Figure 1). The log- ratio is a widely used effect size measure in eco-
logical meta- analyses to summarize the magnitude and direction of 
multiple research outcomes (Hedges et al., 1999). The log- ratio value 
is positive when A is greater than B, negative when B is greater than 
A, and zero when A and B are equal (i.e., the two methods estimate 
the same diversity). To test which method detected the highest di-
versity, we used linear mixed models with the study block as random 
effect (intercept). Two models were fitted: an intercept- only model 
to address the mean log- ratio, and one model including the group of 
organisms as an independent variable to test possible effects of the 
type of taxa on the log- ratio.

To analyse the congruence between traditional methods and 
DNA metabarcoding, we compared the three fractions (traditional 
only, DNA metabarcoding only and the intersection fraction, see 
above and Figure 1). Fractions were standardised by turning them 
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into proportions with values ranging from zero to one to allow cross- 
study comparisons. To test differences between fractions within 
and across groups of taxa, we used a beta- regression mixed model 
(Ferrari & Cribari- Neto, 2004), including the taxonomic groups 
(plankton and microphytobenthos, macroinvertebrates, and fish) 
and the types of fraction (traditional only, DNA only, and both) as 
independent variables. The beta- regression is based on the assump-
tion that the response variable is beta- distributed, and is particularly 
well adapted to study proportions. Two models were fitted sepa-
rately for gamma and alpha diversity and two levels of nested ran-
dom effects (intercepts) were specified (studies and comparisons) 
for these models. Proportion values were compressed using the 
method of Smithson and Verkuilen (2006) to avoid true zeros and 
ones in the beta- regression. Due to a major lack of data in the other 
taxonomic levels and the large class imbalance, the model was fit-
ted only for the comparisons made at species level (i.e., the level for 
which we had the most data available). Beta- regression models were 
completed with post hoc pairwise comparisons among groups based 
on estimated marginal means with a Tukey's procedure to control for 
family- wise error rate.

We performed all the statistical analyses with R 4.0.3 software 
(R Core Team, 2020). Generalized linear mixed models were fitted 
using the glmmTMB package (Brooks et al., 2017) and the emmeans 
package was used to perform post hoc pairwise comparisons (Lenth, 
2021).

3  |  RESULTS

From the 1,217 studies initially identified by the literature search, 
many focused on single species assays or bacteria only, and were 
thus excluded. In total, 99 studies met our inclusion criteria and 
were used in the analyses (Table 1, Supporting Information S2). 
From these, we extracted a total number of 215 comparisons (some 
articles presented several comparisons using different primers or 
different taxonomic groups assessed separately) of diversity meas-
urements between a traditional method and DNA metabarcoding. 
Most of these comparisons were presented at regional level, that 
is, gamma diversity (188 comparisons). A relatively large number of 
studies reported data for each approach at site level (120 compari-
sons), while the intersection fraction between the traditional and 
DNA methods could be extracted for 88 comparisons. All the ex-
tracted data are available (Keck et al., 2021).

The data included several continents and climatic regions. 
However, they are strongly spatially aggregated and most studies 
are focused on Europe and North America (Figure 2a). The data 
set covers a large variety of functional and taxonomic groups that 
range from microbial species to fish (Figure 2b), representing an 
important variation in body size or trophic position. Both marine 
(44% of comparisons) and freshwater ecosystems (56%) are repre-
sented (Figure 2c), with data available for numerous types of aquatic 
environments, ranging from small streams and ponds to oceans 

F I G U R E  1  Study workflow. Gamma 
diversity (i.e., regional richness) and 
alpha diversity (i.e., local richness) values 
were extracted for different taxonomic 
groups from 99 studies. For each type 
of diversity, the relative fraction of taxa 
detected by the traditional method only 
(green), by DNA metabarcoding only 
(red) and by both methods (yellow) were 
compared. The log- ratio between the total 
diversity detected by DNA metabarcoding 
and the total diversity detected by the 
traditional method was also assessed
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(Figure 2a). Most comparisons were made and reported by the 
authors at species level (49.8% of comparisons), although a signifi-
cant number of studies investigated diversity at higher taxonomic 
levels (Figure 2d). The variety of studied organisms and habitats is 

reflected by the diversity of genetic markers (9 markers, 64 different 
primer pairs) and source of DNA used by the authors (Figure 2e– f). 
Finally, several sequencing technologies are represented in the data 
set, with Illumina MiSeq being the most commonly used technology 

TA B L E  1  List of articles included in the meta- analysis sorted by group of organisms

Group of organisms Articles included

Plankton and 
microphytobenthos

Abad et al. (2016), Apothéloz- Perret- Gentil et al. (2017, 2020), Bachy et al. (2013), Bailet et al. (2020), Clarke et al. 
(2017), Djurhuus et al. (2018), Dzhembekova et al. (2020), Eiler et al. (2013), Harvey et al. (2017), Hirai et al. 
(2015), Huang et al. (2020), Huo et al. (2020), Kang et al. (2021), Kermarrec et al. (2014), Kim et al. (2019), Kim 
et al. (2020), Li et al. (2019b), Liu et al. (2017), Minerovic et al. (2020), Mora et al. (2019), Nunes et al. (2019), 
Pérez- Burillo et al. (2020), Pujari et al. (2019), Rivera et al. (2018b), Rivera et al. (2018a), Schroeder et al. 
(2020), Semmouri et al. (2021), Vasselon et al. (2017), Visco et al. (2015), Xiao et al. (2014), Yang et al. (2017), 
Zimmermann et al. (2015)

Macroinvertebrates Aylagas et al. (2016), Aylagas et al. (2018), Azevedo et al. (2020), Borrell et al. (2017), Cahill et al. (2018), Cowart 
et al. (2015), Elbrecht et al. (2017), Emilson et al. (2017), Erdozain et al. (2019), Fernández et al. (2018), 
Fernández et al. (2019), Haenel et al. (2017), Harper et al. (2020), Kelly et al. (2017), Krol et al. (2019), Kuntke 
et al. (2020), Laini et al. (2020), Leese et al. (2021), Lejzerowicz et al. (2015), Lobo et al. (2017), Mächler et al. 
(2019), Marshall and Stepien (2020), Martins et al. (2019), Obst et al. (2020), Rivera et al. (2021), Serrana et al. 
(2018), Serrana et al. (2019), Steyaert et al. (2020), Sun et al. (2019), Uchida et al. (2020), Vivien et al. (2019)

Fish Afzali et al. (2021), Aglieri et al. (2020), Berger et al. (2020), Bleijswijk et al. (2020), Boivin- Delisle et al. (2021), 
Bylemans et al. (2018), Cilleros et al. (2019), Closek et al. (2019), Collins et al. (2019), Doble et al. (2020), Evans 
et al. (2017), Fujii et al. (2019), Goutte et al. (2020), Hänfling et al. (2016), Hayami et al. (2020), McClenaghan 
et al. (2020), McDevitt et al. (2019), Nguyen et al. (2020), Oka et al. (2021), Olds et al. (2016), Polanco 
Fernández et al. (2021), Pont et al. (2018), Port et al. (2016), Sakata et al. (2021), Sard et al. (2019), Shaw et al. 
(2016), Snyder and Stepien (2020), Thomsen et al. (2012), Valentini et al. (2016)

Others
(including multiple groups)

Alsos et al. (2018), Deagle et al. (2018), Gran- Stadniczeñko et al. (2017), Leduc et al. (2019), Nichols and Marko 
(2019), Shackleton et al. (2019), Valentini et al. (2016)

F I G U R E  2  Overview of the different comparisons extracted from the studies included in the meta- analysis. (a) Geographic location of the 
comparisons. Colours indicate the group of organisms used (plankton and microphytobenthos in green, macroinvertebrates in blue, fish in 
orange and other types in light grey). (b) Number of comparisons (n) across the different groups of organisms. (c– g) Number of comparisons 
(n) across biomes (marine includes brackish waters), taxonomic levels of identification, genetic markers, origins of DNA and sequencing 
technologies. The “multi” category includes comparisons combining several other categories

(a)

(c) (d) (e) (f) (g)

(b)
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over the studied period (69.3% of comparisons; Figure 2g). Detailed 
distributions of the recorded observations are shown in Figure S1 
and S2.

At regional level (gamma diversity), we found that there was no 
one approach that detected higher richness than the other (Figure 3). 
We measured an average log- ratio between DNA metabarcoding 
and the traditional method of – 0.010 (sd = 0.764) which was not 
found to be significantly different from zero by the statistical model 
(intercept = – 0.016, Z- value = – 0.187, p = .851) and the effect of the 
group of organisms was not found significant (Wald Chi2 = 2.078, 
df =3, p =.556). At local scale (alpha diversity), the average log- ratio 
was 0.093 (sd = 0.73) and was found marginally- significant in the 
model (intercept = 0.167, Z- value = 1.979, p = .048), suggesting 
that DNA metabarcoding could detect more taxa, on average, than 
traditional methods. Similarly to the gamma diversity, the effect of 
the group of organisms was not found significant for alpha diversity 
(Wald Chi2 = 0.486, df = 3, p = .922). Details on the estimated terms 
of the models are provided as (Table S2).

Overall, we found that the proportion of diversity detected 
strongly varied accross fractions (traditional only, DNA only, or 
both methods) and groups of organisms (Figure 4 for species, see 
Figures S3 and S4 for the other taxonomic levels). This was con-
firmed both for alpha and gamma diversity by the analyses of devi-
ance of the beta- regression models (interaction term p = .007 and 
<  .001 respectively, Table S3). Further, we found that the fractions 
of gamma diversity detected only by the traditional method and 
only by DNA metabarcoding were significantly lower than the frac-
tion detected by both methods for fish (Table S4). This trend is in-
verted for plankton and microphytobenthos (Figure 4a), although 
only the “traditional- only” fraction was significantly higher than 
the “both” fraction (Table S4). Macroinvertebrates are intermedi-
ate, with none of the fraction being significantly higher than the 
others (Figure 4b and Table S4). Very similar trends were observed 
for alpha diversity (Figure 4d– f), but none of the pairwise tests 
showed significant differences (Table S5), probably because of a 
lack of statistical power.

We also observed a high variability in the proportion of species 
found with both methods, ranging from 2% (macroinvertebrates) 
to 93% (fish). This variability was also important within taxonomic 
groups (e.g., ranging from 2% to 71% in macroinvertebrates, Figure 4).

Besides the group of organisms, we also recorded and explored 
the effects of other factors like the origin of DNA or the difference 
between marine and freshwater systems. The effects of these fac-
tors and especially the combined effects of these factors with the 
effect of the group of organisms are only visually presented (Figures 
S5– S8), but were not formally tested because of a lack of data, class 
imbalance, and the high multicollinearity among variables (e.g., be-
tween the groups of organisms and the origin of DNA). In addition, 
we extracted several other variables specific to each study that 
could have an influence on the comparison between DNA metabar-
coding and traditional methods (Figures S2). This included the total 
number of reads available (ranging from 2 × 104 to 2.7 × 108), the 
number of sites (ranging from 1 to 164) and samples (ranging from 1 
to 373) studied, or the year of publication of the study (ranging from 
2012 to 2021, possibly conditioning the sequencing and bioinfor-
matics techniques used and associated to the completeness of the 
reference databases used at the time). All these variables are of pos-
sible further interest, but can also be sources of variation, probably 
to generate statistical noise, which are controlled for in our analyses 
by including the study block as random effect in all models.

4  |  DISCUSSION

Since the initial proposal to use metabarcoding to simultaneously 
identify all organisms in the environment (Ficetola et al., 2008; Jerde 
et al., 2011; Taberlet et al., 2012, see also Pawlowski et al., 2020b 
for a recent commentary on this), many scientists are intrigued by 
or have questioned its comparability with the traditional meth-
ods used for biodiversity inventories. In order to synthesise and 
provide a quantitative basis of the current state of knowledge on 
this issue, we collected and analysed all available data from a large 

F I G U R E  3  Histograms of the log- ratio 
between the total diversity detected 
by DNA metabarcoding and the total 
diversity detected by the traditional 
method. The left panel shows gamma 
diversity (i.e., regional richness) and the 
right panel alpha diversity (i.e. mean 
local richness). Density estimates (kernel 
bandwidth = 0.25) for each group of 
organisms are represented as coloured 
overlays
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corpus of publications comparing traditional methods with DNA 
metabarcoding.

At regional level (gamma diversity), we found that there was no 
one approach that detected more diversity (richness) than the other. 
This result indicates that the regional richness estimated by me-
tabarcoding matches well with the traditional methods, hence con-
firming the potential of this approach for biodiversity assessment 
in aquatic ecosystems. This is, however, an overall trend across all 
studies, while the distribution of log- ratio (Figure 3a) shows a wide 
range of situations, with some rare cases where the absolute log- 
ratio reaches 2 (i.e., one method detected seven times more taxa 
at the regional scale than the other). Unlike gamma diversity, the 
log- ratio was found to be significantly higher than zero for alpha 
diversity, suggesting that at site level, DNA metabarcoding de-
tects more diversity than its traditional counterparts. This result 
should be interpreted with caution, especially in view of the small 
effect size reported (on average metabarcoding detected 1.1 times 
more taxa than the traditional methods), but is in line with a recent 

meta- analysis showing that the probability of species detection is 
higher with eDNA than with traditional methods (Fediajevaite et al., 
2021).

Traditional methods and their respective efficacy will probably 
remain stable in the future as those methods have been established, 
optimised and standardized over decades. Contrastingly, the tech-
niques behind DNA metabarcoding are continuously refined and 
the approach has probably not yet reached its full potential in its 
ability to detect taxonomic diversity (Keck et al., 2017). In particu-
lar, the reference databases used to evaluate taxon- occurrences are 
far from complete (Weigand et al., 2019). This variability and his-
toric development of the metabarcoding approach can also be seen 
in our data by the large number of approaches and protocols used 
across the studies reviewed, resulting in a large variation in sequenc-
ing depth, number of investigated sites, and replicates. Such varia-
tion may be inherent and typical for a young field of research and 
partially obscure the differences between the two approaches, but 
this is precisely the aim of a meta- analysis to combine results from 

F I G U R E  4  Relative fraction of diversity detected by the traditional method only, by DNA metabarcoding only and by both methods. 
Data are presented for different groups of organisms identified at species level only. Boxplots show medians, first and third quartiles, and 
full ranges (limited to 1.5 × interquartile range). Grey lines connect values from the same comparison. Framed numbers below each panel 
indicate the number of comparisons represented. (a– c) Gamma diversity for plankton and microphytobenthos, macroinvertebrates and fish. 
(d– f) Alpha diversity for plankton and microphytobenthos, macroinvertebrates and fish

(a) (c)(b)

(d) (f)(e)
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heterogeneous research while controlling for possible variations 
across studies. We may expect that progress and standardization in 
DNA sampling techniques, sequencing technologies, bioinformatics 
processing, and reference database coverage will improve the ca-
pacity of DNA metabarcoding to estimate diversity. This margin of 
progress may suggest that metabarcoding could widen the gap with 
traditional approaches in terms of its ability to measure taxonomic 
richness in the future, as the former is expected to improve further.

Our analyses did not demonstrate a significant effect of the 
type of organism on the log- ratio between the number of taxa de-
tected by DNA and traditional methods. This is surprising and a bit 
unexpected, as, especially for macroinvertebrates, there have been 
extensive debates in the literature about the suitability of (e)DNA 
metabarcoding (Blackman et al., 2019; Elbrecht et al., 2017). The 
large variation observed in the log- ratio across studies, however, 
suggests that the accuracy and overlap depends also on the combi-
nation of many other factors, which can not be modelled here due 
to a lack of data. Besides the group of organisms, the context of the 
study and the methods used can also have drastic effects on the rel-
ative estimates of biodiversity provided by DNA metabarcoding and 
traditional methods. For instance, eDNA in lentic environments may 
persist longer than in lotic or marine systems (Collins et al., 2018; 
Dejean et al., 2011), which implies that metabarcoding data might 
have a better congruence with traditional methods due to a better 
temporal congruence. Similarly, eDNA from lotic and marine systems 
is influenced by transportation from flow (Deiner & Altermatt, 2014) 
and ocean currents (Harrison et al., 2019), meaning that the DNA/
eDNA does not represent the same spatial scale as a traditional sam-
ple from the same environment. Therefore, eDNA samples will gen-
erally reflect different spatio- temporal scales (Civade et al., 2016; 
Deiner et al., 2016) compared to traditional point sampling, such as 
kick- nets (Mächler et al., 2019). Thus, the large diversity of habitats 
and sampling strategies in our data set can possibly explain the large 
variation in log- ratio values. We also note that there is a major differ-
ence across the different taxonomic groups with respect to general 
species richness, specificity of primers used, completeness of refer-
ence databases, sequencing depths and taxonomic scales (see also 
Table S2). This creates possible biases that will also affect the log- 
ratios, and comparability of biodiversity detected across organismal 
groups. For example, fish are a relatively well- defined and small 
taxonomic group. They are generally assessed with highly specific 
primers, and mostly resolved to the species level. In contrast, mac-
roinvertebrates are a highly diverse, phylogenetically poorly defined 
and species- rich group. Moreover, they are usually assessed with 
primers amplifying also many nontarget organisms, and their assign-
ment is often only possible to the genus or family level. Thus, it is not 
surprising that the former, fish, are better covered by metabarcoding 
methods with results matching more closely traditional approaches. 
However, major improvements are yet to come, especially for the 
less efficient groups, with the production of reference sequences, 
the increase in sequencing depths and the development of more 
specific primers. Our analysis should thus not only be seen as an 
assessment of past studies, but can also reveal in which fields and 

organismal groups further research should be conducted to achieve 
a better effectiveness of the metabarcoding approaches.

Although DNA and traditional methods estimated the same num-
ber of taxa (diversity) on average, our results suggest that they often 
do not count the same taxa. This is shown by the fraction of species 
detected by both methods which is particularly low for plankton, mi-
crophytobenthos and macroinvertebrates. This result has important 
implications, because in addition to taxonomic richness, taxonomic 
composition is an essential element of biodiversity. Ecologists are in-
terested in species identities in biological assemblages because they 
are rich in information about environmental quality and ecosystem 
functioning. Additionally, being able to identify taxa is important to 
monitor rare and endangered species or to detect invasive species. 
It is worth noting that, in this study, the correspondence between 
metabarcoding and traditional taxonomic lists is only based on the 
exact match between taxa names. The taxonomic and phylogenetic 
distances between the methods are likely to be less significant, and 
can be used to optimize the calculation of ecological quality indices 
(Keck et al., 2018). Such metrics, however, are rarely reported and 
could not be evaluated.

For plankton and microphytobenthos, which are mainly repre-
sented by planktonic protists and benthic diatoms, the discrepancies 
between traditional methods and DNA metabarcoding can be at-
tributed to the respective flaws of these two approaches, which are 
well documented. Traditional approaches that rely on microscopic 
morphological characters for species identification are known to be 
a source of errors. In particular, several species and species com-
plexes, which have been initially separated using molecular methods, 
are difficult to identify on the sole basis of light microscopy (Jahn 
et al., 2017; Pinseel et al., 2017). Contrastingly, the DNA metabar-
coding approach is also limited in recovering diversity unveiled by 
traditional methods. Firstly, the short DNA fragment used as a ge-
netic barcode can be insufficient (in size and/or variability) to sep-
arate morphotaxonomic species (Apothéloz- Perret- Gentil et al., 
2017). Secondly, reference databases are still incomplete in terms 
of the diversity found in microeukaryotic communities, and many 
environmental sequences cannot be accurately classified at species 
level (Lindeque et al., 2013; Weigand et al., 2019). In this respect, co-
ordinated efforts to build extensive reference databases for protists 
and other microeukaryotic species (e.g., Guillou et al., 2013; Rimet 
et al., 2019) are particularly important and are expected to improve 
metabarcoding performances in the future.

As in the case of planktonic and microphytobenthic organisms, 
the fraction of macroinvertebrate species detected by both methods 
(i.e., overlap in identity of organisms detected) is remarkably low. 
Again, the discrepancies between the lists of taxa produced using 
DNA metabarcoding and traditional morphological analysis can be 
explained by the inherent biases of both methods, as described 
above (Lobo et al., 2017). Furthermore, it is important to men-
tion that the taxonomic extent targeted by the two methods can 
be very different. The generic primers used for macroinvertebrate 
metabarcoding are often rather unspecific and target a diversity of 
organisms (based on their phylogenetic and thus primer- binding site 
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similarity), which is often overlooked by the operators performing 
traditional identification (Elbrecht et al., 2017). The recent develop-
ment of specific primers for macroinvertebrate communities could 
help address this issue (Leese et al., 2021), but probably will not 
completely resolve it, as a polyphyletic group such as “macroinver-
tebrates”, solely defined by their size, may never be adequately cap-
tured by genetic methods without also including closely related but 
smaller organisms. Additionally, the large variance observed in the 
fraction detected by both methods can be explained by the fact that 
our data set includes both environmental DNA and bulk samples for 
macroinvertebrates. Recent studies have shown that environmental 
DNA includes a larger diversity of taxa than bulk samples, but many 
are nontargeted and do not match the taxa identified by traditional 
methods (Gleason et al., 2020; Macher et al., 2018).

For fish, the observed trend is clearly reversed to what we see 
with plankton, microphytobenthos, and macroinvertebrates. The 
fraction of fish species detected by both methods indicates that 
the concordance is good between DNA metabarcoding and the 
traditional approaches. This result is in line with conclusions from 
individual studies (e.g., Hänfling et al., 2016; Li et al., 2019a, 2019b; 
Pont et al., 2018; Valentini et al., 2016) and with a recent synthesis 
by McElroy et al. (2020). The good match between taxonomic lists 
generated by the two approaches can be explained by the limited 
regional diversity of fish communities investigated in the available 
studies. Compared to plankton, microphytobenthos, and macroin-
vertebrates, regional fish faunas are often well documented, and 
reference databases are extensive and can be easily completed by 
sequencing new individuals (Valentini et al., 2016). However, the 
congruence between DNA metabarcoding and traditional methods 
we report here can also be influenced by the overrepresentation 
of studies conducted in Europe and North America in our data set 
(Figure 2) where knowledge of fish populations is most advanced. 
In megadiverse and less studied regions such as the Amazon, DNA 
metabarcoding and traditional methods can show more contrasting 
patterns (e.g., Jackman et al., 2021). Finally, fish being not as genet-
ically divergent as plankton, microphytobenthos, and macroinverte-
brates, scientists have been able to develop highly specific primers 
for this group (Kelly et al., 2014; Miya et al., 2015; Valentini et al., 
2016) which match well with the diversity of organisms captured and 
identified using traditional methods.

It is important to note that our conclusions are drawn using 
one standard measure of diversity, namely richness. Other metrics, 
like Shannon or Simpson indices that take into account the relative 
abundance of taxa, could lead to more nuanced conclusions, in par-
ticular because the issue of abundance with metabarcoding is yet 
to be solved (Piñol et al., 2015; Visco et al., 2015). Moreover, we 
did not investigate how comparable beta diversity (i.e., the species 
turnover among sites) was between the two methods. This is be-
cause beta diversity is more complicated to record and synthesise 
from multiple sources, as it is often reported using different metrics. 
This calls for a more standardised way of reporting data enabling 
future assessments and meta- analyses. Nonetheless, beta diversity 
remains an important component of diversity and can give different 

results if analysed through DNA or traditional methods (Bleijswijk 
et al., 2020).

Recently, several meta- analyses have investigated a variety of 
questions regarding DNA metabarcoding. This includes the diver-
sity of methods used for DNA- based approaches in ecological as-
sessment using benthic macroinvertebrates (Duarte et al., 2021), 
the comparison of species detection probability between eDNA and 
traditional methods (Fediajevaite et al., 2021), or the correlation be-
tween species- specific eDNA concentration and species abundance 
(Yates et al., 2019). This indicates that the field is gaining maturity 
and there is now sufficient data available to synthesise and draw 
general conclusions. It must be noted that this effort is possible only 
if studies report relevant and extractable data in comparable, com-
plete, and standardised ways. Thus, we stress the importance that 
future studies comparing traditional methods and DNA metabarcod-
ing provide consistent information about methods and results. As a 
starting point, we suggest that all variables listed in Table S1 should 
be systematically reported in an accessible way. Adhering to sim-
ple standards will help to improve reproducibility and comparability 
among studies and facilitate future syntheses (Gerstner et al., 2017).

In conclusion, while DNA metabarcoding has great potential for 
biodiversity assessment in aquatic ecosystems, we need to consider 
the implications of significant discrepancies between traditional 
methods and DNA metabarcoding- based methods for particular 
organismal groups. Here, we showed that DNA metabarcoding and 
traditional methods give similar estimates of taxonomic richness 
across major organismal groups. This can make these tools interop-
erable, for example to study patterns and trajectory of biodiversity 
at large spatial and temporal scales. Importantly, however, while the 
two approaches still differ on the identity of the species detected, 
especially in macroinvertebrate and planktonic and microphytoben-
thic communities, they give similar numbers of total taxa recorded. 
This may be a problem if the objective is to replace one method with 
another in long- term monitoring programs where taxon identity is 
important. Our results suggest that, for studies targeting fish com-
munities, eDNA metabarcoding is ready to replace invasive methods 
traditionally used to study the richness and taxonomic composition 
(species presence- absence). However, our study did not investigate 
the capacity of DNA metabarcoding to estimate biomass and species 
abundance, which are known to be poorly quantified by this method 
(Lamb et al., 2019), but are often an integral part of ecological mon-
itoring (e.g., for monitoring fish stocks, or for monitoring protected 
populations). For smaller organisms like macroinvertebrates, plank-
ton, and microphytobenthos, DNA metabarcoding will probably be 
more a complementary approach, capable of revealing aspects of 
biodiversity that were previously ignored or underestimated by tra-
ditional methods.
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